CS 6505 : Computability and Algorithms	Spring 2014
Traveling Salesman Problem	
Lecturer: Arindam Khan	Date: 12th March, 2014

1 Traveling Salesman Problem

- $G=(V, E)$ is a complete undirected graph
- Non-negative integer $\operatorname{cost} c(u, v)$ with each edge $(u, v) \in E$.
- TSP: Find a Hamiltonian cycle of G with minimum cost.
- TSP with triangle inequality: The cost function c satisfies the triangle inequality if for all vertices $u, v, w \in V$:

$$
c(u, w) \leq c(u, v)+c(v, w) .
$$

- TSP with triangle inequality is NP-Complete: also known as metric TSP or constrained TSP. [Proved in HW]
- The TSP has several applications in planning, logistics, VLSI design, DNA sequencing etc.
- Probably the most well-studied problem in combinatorial optimization.

2 Inapproximability of TSP

Claim: If $P \neq \mathrm{NP}$, then for any polynomial time computable function $\rho(n)$, there is no polynomial time $\rho(n)$-approximation algorithm. for the general TSP.

- Suppose that there is a polynomial time ρ approximation algorithm, say \mathcal{A} for TSP.
- We will show that we can use \mathcal{A} to decide the Hamiltonian Cycle problem is which is NP-complete thus showing that $\mathrm{P}=\mathrm{NP}$.
- Let $G=(V, E)$ be an undirected graph.
- Construct a complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ from V.
- For each $u, v \in E^{\prime}$, assign an integer cost:
$* c(u, v)=1$ if $(u, v) \in E$ and
* $c(u, v)=\rho \times|V|+1$ if $(u, v) \notin E$.
- $\operatorname{Run} \mathcal{A}$ on G^{\prime} with this cost function on the edges.
- Suppose G has a Hamiltonian cycle.
* The cost of this cycle in G^{\prime} is $|V|$.
* \mathcal{A} returns a tour whose cost is at most $\rho \times|V|$.
- Suppose G has no Hamiltonian cycle.
* The cost of any Hamiltonian cycle in G^{\prime} is $>\rho \times|V|$:
- Any Hamiltonian cycle in G^{\prime} must include an edge not in E.
- Any Hamiltonian cycle has cost at least $(\rho \times|V|+1)+(|V|-1)$ which is $>\rho \times|V|$.

3 A 2- approximation algorithm for metric TSP

1. Construct a minimum spanning tree (MST) T.
2. Double every edge of T to get an Eulerian graph.
3. Find an Eulerian tour W on this graph. We can take a preorder traversal of T.
4. Let L be the list of vertices obtained by deleting all duplicates in W by keeping, for all vertices u, only the first visit to the vertex u.
5. Let H be the cycle corresponding to this traversal.

4 Analysis

Claim: The algorithm given above is a 2-optimal approximation algorithm.

- Let H^{*} be an optimal TSP tour.
- Then, $C(T) \leq C\left(H^{*}\right)$.
- Deleting an edge from H^{*} gives a spanning tree of G.
- Let W be a list of vertices from a preorder traversal of T before removing duplicates.
- Then, $C(W)=2 C(T)$:
- Every edge of T is traversed exactly twice in W.
- Therefore, $C(W) \leq 2 C\left(H^{*}\right)$.
- Let H be the cycle obtained by deleting all duplicates in W by keeping, for all vertices u, only the first visit to the vertex u.
- Then, $C(L) \leq C(W)$:
- Let W^{\prime} be the list obtained from W after the deletion of some vertices.
- Say a vertex v occurring in the order u, v, w in W^{\prime} is deleted.
- Then, the cost of the resulting list is at most the cost of W^{\prime} :
* There is an edge between u and w since G is complete.
* By triangle inequality, $c(u, w) \leq c(u, v)+c(v, w)$.
- Exercise: The analysis is tight!

5 Christofides Algorithm: 3/2 approximation for metric TSP

1. Construct a minimum spanning tree T.
2. Compute a minimum cost perfect matching M on the set of odd-degree vertices of T. Add M to obtain an Eulerian graph.
3. Find an Eulerian tour W on this graph.
4. Let L be the list of vertices obtained by deleting all duplicates in W by keeping, for all vertices u, only the first visit to the vertex u.
5. Let H be the cycle corresponding to this traversal.

6 Analysis

- Key idea: Use perfect matching in odd degree vertices of MST to obtain an Eulerian graph in step 2.
- Let $S \subseteq V$ and $|S|$ is even and M is a minimum cost perfect matching on S then $\operatorname{cost}(M) \leq \mathrm{Opt} / 2$
- Let H^{*} be the optimal TSP tour and $\operatorname{cost}\left(H^{*}\right)=\mathrm{Opt}$
- Let H^{\prime} be the tour on S by short-cutting H^{*}.
- By triangle inequality, $\operatorname{cost}\left(H^{\prime}\right) \leq$ Opt.
- Now H^{\prime} is union of two perfect matchings on S.
- The cheaper of these two matchings has cost $\leq \operatorname{cost}\left(H^{\prime}\right) / 2 \leq \mathrm{Opt} / 2$.
- $\operatorname{cost}(H) \leq \operatorname{cost}(T)+\operatorname{cost}(M) \leq \mathrm{Opt}+\mathrm{Opt} / 2 \leq 3 / 2 \mathrm{Opt}$.
- The Analysis is tight!
- Exercise: Find such a tight example.

7 Other Comments:

- It is a BIG open question in theoretical computer science to get a $3 / 2-\epsilon$ approximation for metric TSP for any $\epsilon>0$.
- The Euclidean TSP, or planar TSP, is the TSP with the distance being the ordinary Euclidean distance.
- The Euclidean TSP is a particular case of the metric TSP, since distances in a plane obey the triangle inequality.
- Sanjeev Arora and Joseph S. B. Mitchell were awarded the Gödel Prize in 2010 for their concurrent discovery of a PTAS for the Euclidean TSP.
- There are commercial softwares like Concorde which can solve most of the problems with millions of cities within a small fraction of 1% of the optimal.

8 Resources:

I am following chapter 2.4 (The traveling salesman problem) of 1 for the lectures. The book is freely available online: http://www.designofapproxalgs.com/. You can also see chapter 3 (Steiner Tree and TSP) from 2.

References

[1] Williamson, David P and Shmoys, David B. The Design of Approximation Algorithms. Cambridge University Press 2011.
[2] Vazirani, Vijay V. Approximation Algorithms. Springer 2001.

